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a b s t r a c t 

In this paper, we discuss the problem of object detection in a cultural heritage application context. In 

particular, the objects to be detected are ancient rock carvings, discovered at the archaeological site of 

Vathy, Astypalaia in Greece. Without the help of a marker or a human expert, the rock carvings are ex- 

tremely difficult for a visitor of the site to discern from their surroundings. We explore the possibility 

of using a computational method that could replace the human expert and detect the rock carvings of 

interest without the aid of a specific marker. We present a dataset of images that is comprised of anno- 

tated photographs of the rock carvings, taken in situ and under differing poses and lighting parameters. 

Two methods for detection are applied; the first method makes use of a supervised, deep learning-based 

model, while the other relies on feature point-based matching to an annotated template, in the context 

of which we propose a simple image matching distance. We show that each method is applicable under 

different conditions, and evaluate their effectiveness with numerical trials. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

In the recent years, computational methods have been proposed

nd used in the context of cultural heritage in a diverse spectrum

f topics and applications [2,4,6,8,10,12,21] . Various methods, algo-

ithms and associated software exists today to help enhance the

xperience of tourists to a museum, town or other culturally signif-

cant site [6] , or aid cultural heritage professionals in documenting,

ataloguing or preserving cultural heritage objects [19] . 3D recon-

truction for digital preservation [8] is one such prominent applica-

ion, typically applied to sculptures, pottery, and other man-made

rtifacts. In the context of preservation, 3D reconstruction has also

een used as part of a more extended pipeline, providing models

or further processing at a later stage; for example, in [3,4] , pre-

istoric fresco shards are scanned and used as part of a model that

akes into account the affinity and ease of matching between fresco

hard pairs, to the end of reconstructing the whole fresco from its

arts; in [2] , ancient inscriptions are processed to the end of fur-

her statistical analysis of the reconstructed surface. Techniques of
∗ Corresponding author. 

E-mail address: sfikas@cs.uoi.gr (G. Sfikas). 
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bject retrieval have been applied on cultural heritage objects such

s pottery artworks [17] , potentially easing searches in an extended

rtifact collection. Significant research targets digitized corpora of

anuscripts, with computational tools having being elaborated for

igitized document analysis [7,16] . 

In the context of cultural heritage as preserved and exhibited

n museums, new technology is also being increasingly used [18] .

ision-based applications are in the forefront here [27] , with com-

uter vision techniques being exploited in order to enchance visi-

or experience. Augmented reality methods are based on cues from

he user hardware, including visual inputs that may rely on the

lacement of specific markers. Such markers may be a very ef-

ective way to determine a static position from the camera [26] ,

hich is by definition easily discernible from their environment.

owever, while markers may facilitate vision-based detection, it

s not always convenient to attach a marker everywhere it is re-

uired [27] . In this sense markerless vision systems are advanta-

eous, with the caveat that the detection component of the system

ay now correspond to a non-trivial problem, depending largely

n the context and nature of the application. 

In this paper, our focus is on object detection in the context of

ultural heritage. We assume that no markers are used to pinpoint

https://doi.org/10.1016/j.patrec.2020.03.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.03.026&domain=pdf
mailto:sfikas@cs.uoi.gr
https://doi.org/10.1016/j.patrec.2020.03.026


338 G. Tsigkas, G. Sfikas and A. Pasialis et al. / Pattern Recognition Letters 135 (2020) 337–345 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

c  

o  

o  

f  

c  

o  

a  

a  

a  

a  

t  

t  

d  

d  

i  

w  

s  

p

2

 

a  

w  

w  

P  

t  

g  

l  

t  

v  

t  

a  

a

 

r  

o  

b  

i  

f  

s  

m  

i  

t  

a  

d  

h  

p

2

 

e  

p  

d  

t  

“  

a  

a  

1 The full dataset along with the prescribed partitions can be downloaded at 

http://cs.uoi.gr/ ∼sfikas/astypalaia . 
the objects of interest, hence detection is to be performed in the

standard mode expected in other applications of computer vision,

i.e. based on the image content itself. We present a new database

of images, created at the archaeological excavation site at Vathy,

Astypalaia, Greece, which includes images of rocks with rock carv-

ings, acquired in situ and under a variety of poses and lighting con-

ditions. While our objects of interest, i.e. the ancient rock carvings

should be the main point of interest for a potential visitor of the

site, these are next to impossible to discern withouth the help of

an expert. This is due to milennia of exposure that have weathered

the rock, making the carving difficult to see even at a very close

distance. A succesful object detection system would hence be very

useful in the respect of being in perspective used in the context

of an AR application, for example embedded to a smartphone app

[5] . For example, a tourist visiting the archeological site in the ab-

sence of an expert’s guidance would simply have to hold his or her

smartphone with its camera facing at objects of potential archae-

ological interest. If one of the rocks is found to contain a carving,

the application would alert the user by showing a bounding box

around the rock as well as a short description and other informa-

tion about the carving. In this manner, the tourist experience on

the site can be significantly more autonomous compared to as be-

ing dependent to a tour guide. Furthermore, no visible markers are

required to be added anywhere on the site; the presence of mark-

ers, such as signposts, can be aesthetically displeasing both for site

visitors and with respect to the site itself. 

Let us also note that the problem is made even more challeng-

ing due to the lanscape itself; it is made up for the most part of

large rocks of grey dolomite limestone, uncarved but similar to the

ones we aim to detect. Furthermore, the most abundant objects

beside rocks, are low cedar bushes, that naturally look very simi-

lar to one another. These factors, along with the shallow carving or

pecking of the rock engravings, constitute a challenging detection

problem. 

In order to solve the stated problem, we propose the use of two

different vision systems, one relying on a deep learning-based ap-

proach, while the other being based on more standard computer

vision tools. We use the YOLO model [13,14] as our deep learning-

based approach. YOLO is a state-of-the-art object detector recently

proposed, and already used in a very wide range of applications.

While deep neural network-based models are indeed very succes-

ful in solving many different tasks [9] , they are notorious for re-

quiring very large datasets for training. On the other hand, train-

ing a neural network is equivalent to solving a difficult optimiza-

tion problem in a very high-dimensional parameter space, mean-

ing in practice that training is not always a straightforward task,

depending on numerous hyperparameters, good initialization, and

training strategy heuristics. For these reasons, we have also used a

non-deep learning based method. The core of the second method

is Scale Invariant Feature Transform (SIFT) feature extraction and

matching with an annotated template image using Random Sam-

ple Consensus (RANSAC) [11] . On the context of this latter method,

we propose a simple distance metric in order to determine the

most appropriate annotated template. We validate the usefulness

of this metric by computing manifold embeddings with respect

to the metric using Isomap [20] , as well as with numerical re-

sults. As we shall discuss in more detail in the following sections,

each of the two proposed detection methodologies comes with its

own merits and drawbacks according to the assumptions we make

about the available images. 

The paper is organized as follows. In Section 2 , the dataset ac-

quisition process is presented. In Section 3 , we discuss the meth-

ods that we have used for markerless detection of the objects of

interest, and in Section 4 we present and compare the methods

with numerical and qualitative results. We close the paper with

Section 5 , where we discuss conclusions and future work. 
. Dataset 

The new dataset consists of images captured at the Vathy ex-

avation site, located on the island of Astypalaia, Greece. Archael-

gical research has commenced in Vathy in 2011, around the ruins

f an hellenistic tower. Since then, research has uncovered findings

rom numerous historical eras, including most notably an Early Cy-

ladic fortified settlement [23] , as well as later, albeit less numer-

us findings. One of the most important findings of the fieldwork

t Vathy was the identifying and studying of a large number of

ncient rock carvings. Most of the carvings have been identified

s prehistoric, two of them being inscriptions dated to the archaic

nd classical periods (early 6th - early 4th c. BCE) [25] . In the con-

ext of the proposed image dataset, we are interested in specifically

hree rocks and the corresponding rock carvings; two of them are

ated to the Early Bronze Age (3rd mill. BCE), and one inscription

ated to the classical era (early 4th c. BCE). The three rock carv-

ngs can be examined at Fig. 2 . In the remainder of this section,

e shall discuss in more detail the archaeological context corre-

ponding to the rock carvings of interest, as well as describe the

rocess of creating the dataset. 1 

.1. About the excavation site 

Vathy is a naturally protected peninsula controlling the narrow

ccess from the open sea to the homonymous gulf on the north-

est rocky coast of Astypalaia, thus ensuring full monitoring of a

ide area of sea and land ( Fig. 1 ). At the easternmost tip of the

yrgos promontory, on Cape Elliniko, an acropolis was founded in

he 3rd millennium BCE, the boulder-built circuit walls and me-

alithic retaining walls of which are visible today. On the upper

evel of the headland, a tower with surrounding ancillary facili-

ies was erected in the late 4th c. BCE. The intensive surface sur-

ey which has been carried out at Vathy since 2012 and the sys-

ematic excavation since 2014 have revealed numerous monuments

nd finds, which further establish the Early Cycladic elements, but

lso point to influences from other areas of the Aegean [22,23,28] . 

The recovery of Early Cycladic marble figurines and numerous

ock engravings of spirals, oared ships, daggers, arrows, axes and

ther motifs over a wide area of dolomitic limestone on the cape,

oth quarried, built and in natural state identify Vathy as a signif-

cant site of the Early Bronze Age Aegean, with intense Cycladic

eatures [24] . Archaic (6th c. BCE) and classical (4th c. BCE) in-

criptions were also located on the peninsula indicating that hu-

an activity continued in later centuries ( Fig. 2 ). The 4th-c. BCE

nscription of someone named Dion, probably a guard patrolling

he strategic point of the peninsula [25] and the emblematic rock

rt representations of a long oared ship and of the daggers, that

ecorate two monumental gateways of the 3rd mill. BCE acropolis,

ave been chosen as the case study motifs for the purposes of the

aper in hand. 

.2. Procedure of dataset creation 

The proposed dataset is comprised of images shot at the Vathy

xcavation site. In total, we include 1078 images in the dataset, de-

icting in their majority one of the three rock carvings that were

iscovered on the site as a result of archaeological fieldwork. These

hree rock carvings will be named, in the context of this work,

Dion”, “Ship”, and “Dagger”. These names are conventional, and

re loosely based on the content of each of the rock carvings. They

re each located on top or the side of a different rock, and each of

http://cs.uoi.gr/~sfikas/astypalaia
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Fig. 1. Location of the excavation site where the dataset was collected. The site is located at the north part of the island of Astypalaia,Greece (36 ◦37’03”N,26 ◦23’43”E). (a) 

The box delineates the peninsula where the excavation site is located (“Cape Elliniko”) (b) The peninsula seen (marked with a box in (a)) from the opposite coast. 

Fig. 2. The three rock carvings of interest. On rows from top to bottom we see the carving of “Dion”, “Ship” and the “Daggers”. The pictures on the left column are actual 

images included in the dataset. The pictures on the right column (originally in [25] and [22] ) depict the same rocks and rock carvings either marked by the excavation 

workers and photographed under conditions that would make the carvings more easily visible, specifically for the picture (two leftmost images) or depicted as a sketch 

(rightmost image). The unmarked and marked images are shown here in juxtaposition so that the reader can better appreciate that in all cases the actual rock carvings are 

extremely hard to point out. 
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he rocks is located at a distance of several tens of meters from one

nother. The rock carvings of interest can be examined in Fig. 2 .

ote that all three rock carvings are extremely hard to discern by

 non-expert visitor of the site, even under good lighting condi-

ions and/or at a very close distance. 

In terms of hardware, a NIKON D700 camera (focal length

 mm) was used to capture the dataset images. All images were

aptured at a resolution of 2128 × 1416 pixels. Images were cap-

ured during the month of July, 2016, and they are grouped – aside
rom the depicted rock carving – according to two other varying

arameters: time of capture, and distance from rock carving of in-

erest. We took photos in four distinct times during the day: these

re “daybreak” (around 6am), “morning” (around 10am), “noon”

around 2pm) and “afternoon” (around 6pm). On a varying de-

ree, rock carvings may be easier or harder to see during different

imes in a day, and this is also a function of the rock carving loca-

ion and orientation. The next major parameter that varies for pic-

ures of this dataset is the distance of the photographer from the
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Table 1 

The number of images depending on the rock carving they depict, the time they were 

captured and the distance between the camera and the rock. “c”, “m” and “f” denote 

distance of camera from the photographed rock, corresponding to “close”, “mid-range”, 

“far” respectively (see text for details). 

Daybreak Morning Noon Afternoon 

c m f c m f c m f c m f 

Dion 8 26 38 35 26 24 24 15 16 9 16 17 

Ship 16 23 22 14 26 28 12 19 16 11 21 23 

Dagger 14 17 29 16 34 29 14 16 21 18 19 17 
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rock carving of interest. We used three distinct distance groups,

named: “close” ( 1 − 2 m), “mid-range” ( 4 − 5 m), “far” ( 10 − 15

m). Having included a variety of times/lighting conditions, as well

as distances to the object of interest, we help to avoid a positive

or negative bias in terms of automatic detectability. Furthermore,

dataset variability can help in terms of emulating conditions for fu-

ture images that may be used as input to a computational pipeline,

trained or finetuned with respect to the supplied images ( Table 1 ).

3. Proposed methods 

We propose two methods to solve the problem of automatic de-

tection of rock carvings. The first detection method is based on a

deep neural network architecture, that has given state-of-the-art

performance in object detection tasks in the literature [14] . As all

neural network models, this method however requires a large set

of images that are beforehand annotated with the true rock carv-

ing locations, used as a training set. In order to simulate a setting

where a large training set is unavailable, we propose an alterna-

tive, second method. SIFT feature points [11] are computed on a

test image, as well as an annotated template; RANSAC is then used

to match the two images [11] and to finally produce the predicted

object location. In what follows, we discuss the two methods in

detail. 

3.1. Deep learning-based object detection 

As our deep learning-based object detector, we use YOLOv2 and

a light-weight version of the same model, TinyYOLO-v2 2 [14] . In

this paper, we shall refer to the two models as YOLO and TinyYOLO

for brevity. YOLO is a state-of-the-art real-time object detection

system based on a convolutional neural network. It is also a highly

generalizable system, which means it is less possible to make de-

tection errors in different domains from what it was trained on.

Moreover, YOLO attains fewer false positives in the background of

the image because it performs the prediction accessing the full in-

put image, and not selected areas like other detectors. Hence, we

believe that selecting YOLO as a representative supervised detec-

tor for the purposes of the current work is a sensible and quite

straightforward choice. YOLO is fed with the image where poten-

tial objects of interest exist, and returns as output possible posi-

tions, geometry and predicted object classes. The neural network

(called Darknet-19) is comprised of a total of 19 convolutional lay-

ers, topped with batch-normalization layers. These are further cou-

pled with 5 max-pooling layers, while dropout layers are also used

to improve model generalization. 

Training is performed in each case using the training subsets

of the proposed partitions (see Section 4.1 ). Part of the training

set is employed as a validation set, used as a training-time bench-

mark to either reduce the learning rate or terminate training. For

TinyYOLO, RMSprop was used for training, with initial learning rate
2 We used the popular implementation of https://github.com/thtrieu/darkflow . 

t

et at 10 −3 . Learning rate was then gradually reduced to 10 −4 and

nally 10 −5 , after which training terminates when validation set

etection rates are not further improved. For YOLO, an analogous

raining schedule was used 

3 . Network parameters were initialized

ith weights that were pre-trained on the COCO dataset [14] . 

.2. Feature point-based detection 

A number of annotated images is here also necessary. In this

ethod, these images are however used in a different manner. In-

tead of being used to drive an optimization scheme, they are used

s template images. This is to be understood in the sense of im-

ges that should be matched by a specific transformation with re-

pect to the input (test) image. Once the required transformation

s computed, the ground truth bounding box that is found on the

emplate is also transformed to align with the test image, thus be-

oming the predicted region. Examples of matching against an an-

otated template using this scheme can be examined in Fig. 4 . 

The first step of the method requires SIFT keypoints to be com-

uted on the test image, as well as on all candidate matching tem-

lates. The matching candidates are all pre-annotated images (i.e.

he “training” set). We have used the OpenCV library 4 to compute

IFT keypoints. We compute at the most, 50 0 0 keypoints per im-

ge. In order to speed-up the algorithm, images of half the original

idth and height are used. In order to select the most appropriate

emplate, we compute a similarity measure between the test image

ersus all candidate templates. This similarity measure is defined

s the number of keypoints that match between images. Matches

re computed using the RANSAC algorithm, which estimates a pro-

ective transformation between the two-point sets by following the

ext steps. 

(1) We choose 3 SIFT keypoints randomly from the first image

nd then, from the second image, we choose the 3 best match-

ng points to the previous 3 points. The matching factors are the

eatures of the keypoints and the Euclidean distance between the

 points. Subsequently, we add the best-matching pairs of points

o a “consensus” set. (2) Based on the consensus set, we compute

he parameters of the projective transformation T. (3) We apply the

 transformation to all the points of the first image and we add

he pairs of points, to the consensus set, that match the best be-

ween the transformed points and the points of the second image.

4) We return to step 2, until T transformation’s paramaters will

ot change at the next iteration. A number of matching keypoints

elow 10 is considered too low, at which case the two images are

ejected as non-matching. Our premise is that more matching key-

oints should indicate a better image (content) affinity between

mages, resulting from a similar camera position and orientation

or the two images. In order to test this premise, we have com-

uted two-dimensional embeddings for our images using Isomap
3 Stochastic Gradient Descent (SGD) was used, as we found that the implementa- 

ion of RMSprop for YOLO particularly was memory-inefficient. 
4 https://opencv.org/ . 

https://github.com/thtrieu/darkflow
https://opencv.org/
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Fig. 3. Dataset sample images. 
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20] . Isomap estimates a non-linear manifold, assigning each im-

ge to a single point in a low-dimensional space (here, ∈ R 

2 ). The

stimated low-dimensional coordinates are constrained to mini-

ize discrepancy between inter-point distances that are provided

s input to the algorithm, and distances on the calculated low-

imensional space. The embedding can be computed through the

ollowing steps. First, we construct a neighborhood graph by con-

ecting pairs of points, if the first point is one of the ‘k’ 5 near-

st neighbors of the second point. Subsequently, we compute the

hortest path distances between all the points in the graph and we

ut them on a matrix D G which is now called a distance matrix. At

he last step, we construct the requested d-dimensional embedding

y applying the classical MDS algorithm to the distance matrix D G .

n Fig. 5 , Isomap embeddings computed over a sample of the im-

ge dataset are shown, juxtaposed on the map of the excavation

ite. As Isomap requires distances between points as its input, we

ave used a simple exponential transformation d(I 1 , I 2 ) = e −λm to

ompute a distance between each image pair I 1 , I 2 . λ is a transfor-

ation parameter (here set to λ = 0 . 05 ) and m corresponds to the

umber of matches computed using the previous scheme. Isomap

equires also its free parameter, ‘k’, to be selected properly. Using

n automatic method for selecting the optimal value for this pa-

ameter [15] , the resulting parameter for the “Dion” carving em-

edding is 4, for the “Dagger” carving embedding it is 3 and fi-

ally for the “Ship” carving embedding it is 2. Note that the em-

edding points form approximate circles, with images taken from

lose positions appearing as nearby points on the embedding. The

mbedding relative positions appear to be correlated to the real

eographical positions from which the photographs were acquired,
5 ‘k’ is the only free parameter of Isomap and it is the number of the nearest 

eighbors of each point. 

t

j

s they were photographed as shots of a constant radius around

ach rock carving of interest. Hence, this result validates the use-

ulness of the proposed distance measure. 

Note that in numerous cases, the object of interest by itself (the

ock carving) is not useful as a region of features to be matched,

hat is useful in terms of using its image content to detect it by

omputational means. This is due to the fact that we aim to de-

ect rock carvings, which may be difficult to see or even invisible

o the naked eye (especially the “dagger” carving, Fig. 2 ). For this

eason, the image context of the rock carving, rather than the rock

arving itself, is more useful to detect it. Indeed, keypoints of the

ock carving surroundings may be easier to match. For example in

ig. 4 , last image pair, SIFT keypoints for a nearby rock are correctly

atched, while the rock that includes the carving is not useful in

erms of SIFT matching. This is inconsequential to the final out-

ut, as matching the context around the rock carving is fortunately

nough in many cases; in the aforementioned example, the cor-

ect 6 geometric transformation is computed, and used to transform

he template bounding box correctly. On the other hand, matching

eypoints that correspond to objects that are too far away from

he rock carvings is detrimentary to computing a good geometric

ransform. Such objects are usually details on “background” hills

r coastlines. This is not at all suprising, as image elements that

re on a significantly different distance w.r.t. to the foreground will

orrespond to a much different (smaller, if these objects are on the

ackground) apparent movement. In turn, this will lead to an erro-

eous estimated transform. For this reason, we aim to reject key-
6 Correct in the sense of acceptable in practice; in theory, the camera movement 

hat describes the difference between the two images may not correspond to a pro- 

ective transformation. 
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Fig. 4. Detection results using the feature point-based method. An annotated template image is necessary (left column) to perform detection on an input test image (right 

column). White bounding boxes are manually annotated ground truth rock carving positions. Black quadrilaterals on test images (right column) correspond to the transformed 

box resulting from the transformation of the ground truth bounding boxes available on the template images (left column). The detected SIFT keypoints that are part of the 

concensus set are shown, along with the RANSAC-based matches (lines connecting points from one image to the other) between keypoints on each template and test image 

pair. 
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points that correspond to background, distant image elements, by

using only keypoints found in the lower 60% of the image height. 

4. Numerical evaluation 

4.1. Dataset partitions 

In total, there are 1078 images in the dataset. Samples of the

images can be examined in Fig. 3 . All dataset images have been

manually annotated using the LabelImg 7 annotation tool. The pro-

vided annotations are in the form of a bounding box around the

object of interest, as well as its class, i.e. the specific rock carving

being photographed. 

For our experiments, we have used two different partitions of

this dataset into varying-sized training and test sets. The two parti-

tions differ mainly with respect to their size, hence named Full and

Minimal partition respectively. The Full partition contains all 1078

images. We have chosen images so as to ensure that on both the

training and the test partitions all landmarks, all times and all dis-

tances are represented. The Full partition has thus been split into a

90% to 10% ratio between the proposed training and test sets, with

967 images and 111 images to each subset respectively. The Mini-
7 https://github.com/tzutalin/labelImg . 

v  

s  

p  
al partition includes only a fraction of the full set, with a total of

11 images. These are partitioned again at a similar ratio between

 training and a test set, with 9% of the full set used as the training

et, and about 1% used as a test set. These percentages correspond

o 99 and 12 images for the two subsets respectively. 

A version of the full dataset has also been created, where the

raining set is augmented with artificially created images. Data

ugmentation is standard practice in contexts where a model re-

uires large training sets, such as is the case with neural networks

9] . For each image in the training set of the Full partition, three

ew images randomly rotated were created, at a maximum ab-

olute rotation angle of 30 degrees. Also, three new images from

andomly cropped areas of the initial image and then upsampled

t the resolution of the initial image were created. We refer to this

artition, totalling 6214 images, as Full-Aug in our experiments. 

.2. Experiments 

About the training and validation process of YOLO and TinyY-

lo detectors, we decided to train the deep networks dynamically

y checking on the validation errors and not with some predifined

alue of epochs. This is the reason that the numbers of epochs

hown in Table 3 vary. More specifically, we started the training

rocess with a learning rate set to 10 −3 . During training, if the val-

https://github.com/tzutalin/labelImg


G. Tsigkas, G. Sfikas and A. Pasialis et al. / Pattern Recognition Letters 135 (2020) 337–345 343 

Fig. 5. Two-dimensional embeddings for a sample of the dataset images, using Isomap and the proposed SIFT-based distance measure as input. The position of the rock 

carvings on the site map is shown (bottom left quadrant), to each of which one embedding is computed. Images that were acquired from positions close to one another 

are automatically assigned to close positions to their respective embeddings, thus correlating to the original camera geographical positions. The Dion’s embedding is the one 

with the red colored points, the Daggers’s embedding is the one with the blue points and finally the Ship’s embedding is the one with the green points. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Numerical comparison between different methods (rows) and 

used partitions (columns), in terms of the IoU and F-measure 

metrics. SIFT-based refers to the discussed feature point-based 

method, while the other two are variants of the deep learning- 

based YOLO model (see text for details). 

IoU 

Minimal Full Full + Aug 

SIFT-based 0 . 65 ± 0 . 2 0.38 ± 0.3 - 

Tiny YOLO 0.25 ± 0.3 0 . 59 ± 0 . 41 0.58 ± 0.4 

YOLO 0.29 ± 0.35 0.56 ± 0.4 0 . 65 ± 0 . 38 

F-measure 

Minimal Full Full + Aug 

SIFT-based 0 . 57 ± 0 . 24 0.38 ± 0.2 - 

Tiny YOLO 0.17 ± 0.21 0 . 42 ± 0 . 24 0.36 ± 0.24 

YOLO 0.29 ± 0.23 0.36 ± 0.26 0 . 48 ± 0 . 26 

w  

b  

b  

s  

s  

F  

Y  

A

dation error increased but the training error decreased, we would

top this process, then reduce the learning rate to 10 −4 , and even-

ually recommence from the training step right before results start

o degrade. This process would be repeated until we stopped the

raining while having set the learning rate at 10 −5 . Total training

ime for these detectors are listed in Table 4 . 

We have evaluated numerically the proposed baseline methods.

etection quality results, measured in terms of Intersection over

nion (IoU) scores, can be examined at Table 2 . Furthermore, we

ount a non-zero intersection value only when also the detected

bject class is also correct, i.e. which of the three possible rock

arving is detected. Images containing no rock where nothing has

een detected, i.e. True Negatives, by convention are set to corre-

pond to IoU = 1 . 0 . F-measure scores are also computed [11] , over

recision and Recall values averaged over a set of possible IoU val-

es (from IoU = 0.5 to 0.95 in steps of 0.05). 

We have run tests comparing all methods on the Minimal parti-

ion. Mean and standard deviation of IoU scores are shown. Clearly,

he feature point-based method gives far more accurate results

han both deep learning-based models. This can be attributed to

he small size of the Minimal partition, with its training set of ap-

roximately 100 images clearly not enough to train well a deep

etwork. The situation is different when we need to run tests

n the bigger partitions. While a learning-based matcher exploits

he size of the bigger training set to lead to better results, the

erformance of the feature based-matcher does not improve, but

ather it worsens. Furthermore, it certainly becomes much slower
hen run on a bigger set, as more candidate templates need to

e considered and matched. YOLO and Tiny YOLO have compara-

le performance, with similar (bad) performance on the Minimal

et, and with Tiny YOLO somewhat outperforming YOLO on the Full

et. YOLO however seems to outperform Tiny YOLO on the largest

ull-Aug partition, perhaps due to the greater learning capacity of

OLO. In Fig. 6 an example of YOLO detection trained on the Full-

ug partition can be examined. 
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Table 3 

Total number of training epochs for Yolo and 

TinyYolo. 

Minimal Full Full-Aug 

YOLO 222 101 77 

TinyYOLO 10 153 24 

Table 4 

Total training time for Yolo and TinyYolo in 

hours. 

Minimal Full Full-Aug 

YOLO 2.87 10.97 48.92 

TinyYOLO 0.31 17.41 16.03 

Fig. 6. Detection results using the YOLO detector. The rock carvings depicted from 

top to bottom are “Dion”, “Daggers” and “Ship”. White bounding boxes are manu- 

ally annotated ground truth positions, while coloured bounding boxes correspond 

to YOLO detections. 
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In terms of test-time processing speed, the YOLO-based net-

orks both outpaced the SIFT-based method. Tested on the same

PU (Intel Core i7 6700K Processor), YOLO and Tiny-YOLO required

espectively 0.39 and 0.06 seconds per frame. When run on a stan-

ard GPU (Asus GeForce GTX1060 6GB Dual), these times drop to

.035 and 0.017 seconds per image. The SIFT-based method is con-

iderably slower, requiring SIFT computations and matchings ver-

us all annotated templates. On average this process takes approx-

mately 2 seconds per matched template (on CPU), which amounts

o a total of 207 seconds per detection on the Minimal partition. 

. Conclusion and future work 

We have presented the challenging problem of automatically

etecting the ancient rock carvings found at Vathy, Astypalaia, a

ask that is extremely difficult without the aid of an expert or

 marker. A dataset was created to this end, comprising more

han 10 0 0 photographs of the rock carvings. The dataset will be

ade publicly available. Two baseline methods were tested and

valuated numerically with respect to their detection efficiency.

he deep learning-based method was found to be more efficient

hough requiring as many input instances as possible for training.

he feature point-based method was however more efficient than

he deep learning-based approach on a setting were only a few

lready annotated images were available. The results of the latter

ethod have shown that the image context around the rock carv-

ng is perhaps more useful than the rock carving itself with respect

o detection. This conclusion is justified, as the photos included in

he dataset are made up of a scenery that mostly includes rocks

nd bushes, which when seen separately, are practically indistin-

uishable from one another. 

For future work, the challenges that remain aside from improv-

ng detection accuracy is making sure that any object detection can

n perspective be used as part of a real, AR application that will aid

he visitor of the archaeological site. We believe that this entails at

east two constraints: ensuring that any detection method is fast

side from being accurate, as well as compact enough to be used

y handheld hardware with limited computational resources, such

s a smartphone. Also, the current dataset could be used to ap-

ly photogrammetry and 3 D reconstruction techniques [1] , to the

otential application of Virtual Reality (VR) guided tours. 
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